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Abstract
After recalling different formulations of the definition of supersymmetric
quantum mechanics given in the literature, we discuss the relationships between
them in order to provide an answer to the question raised in the title.

PACS numbers: 03.65.−w, 11.30.Pb

1. Introduction

Supersymmetric quantum mechanics (SUSYQM) was introduced more than two decades ago
by Nicolai [1] and Witten [2]. In its simplest form, it consists of the study of quantum
mechanical systems which are described by a Hamiltonian operator of the form H = Q2

acting on a Hilbert space H which admits a Z2-grading, i.e., H has the form of a direct sum:
H = Hb ⊕ Hf .

The aim of the present paper is to elucidate the precise relationship between different
formulations of the definition for SUSYQM which have been considered in the literature
[1–4]. To start with, we will list these different defining relations as well as the results to be
established in the present work.

2. Definitions and summary of results

The common starting point is a quantum mechanical system (H,H) characterized by a self-
adjoint operator H �= 0 (the Hamiltonian or energy of the system) acting on a complex
separable Hilbert space H (the state space). As usual, the commutator and anticommutator
of two operators A and B are denoted by [A,B] and {A,B}, respectively. All operators to
be considered are linear and the adjoint of an operator A is denoted by A†. Our concern will
primarily be of an algebraic nature and we leave it to the mathematically minded reader to
supplement the relevant analytical details such as domains of definition for operators, proper
characterization of the anti-commutativity for unbounded self-adjoint operators, etc [5].
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2.1. Definitions

Definition 1. The quantum mechanical system (H,H) is called supersymmetric if there exists
a finite number of self-adjoint operators Q1, . . . ,QN on H such that

{Qi,Qj } = 2δijH for i, j ∈ {1, . . . , N}. (1)

The operators Q1, . . . , QN are called supercharges (or supersymmetry generators).

From relations (1), it follows that the supercharges are conserved, i.e., they commute with
the Hamiltonian: [H,Qi] = 0 for i ∈ {1, . . . , N}. Since the latter relation also means that
the Hamiltonian is invariant under the transformations generated by the Qi , the operator H
is called a supersymmetric Hamiltonian or super-Hamiltonian. With supersymmetric field
theories [6] in mind, the algebra (1) with N supercharges is usually qualified as N-extended
supersymmetry algebra.

Definition 2. The quantum mechanical system (H,H) is called supersymmetric if there exists
a finite number of non-self-adjoint operators q1, . . . , qM on H such that{

qi, q
†
j

} = 2δijH {qi, qj } = 0 for i, j ∈ {1, . . . ,M}. (2)

The operators q1, . . . , qM are called complex supercharges.

It follows that
{
q
†
i , q

†
j

} = 0 and that [H, qi] = 0 = [
H, q

†
i

]
for i, j ∈ {1, . . . ,M}. Note that

the operators q1, . . . , qM satisfying (2) cannot be self-adjoint, otherwise H = 0 (contrary to
our assumption H �= 0).

Definition 3. The quantum mechanical system (H,H) is said to be supersymmetric if there
exists a finite number of self-adjoint operators Q1, . . . , Qn (called supercharges) as well as
a bounded self-adjoint operator K (called involution), all of which operators act on H and
satisfy

K2 = 11 {K, Qi} = 0 for i ∈ {1, . . . , n} (3)

and

{Qi , Qj } = 2δijH for i, j ∈ {1, . . . , n}. (4)

The operator K is also referred to as the Klein operator, chirality operator, fermion number
operator, Witten parity operator or Z2-grading operator. Since K is a bounded operator, it
can be (and it will be) assumed to be defined on the entire space H. Note that the choice
K = ±11 implies the trivial solution Q1 = · · · = Qn = H = 0 that we excluded. Definition 3
also implies [H, Qi] = 0 for all values of i.

Definition 4. The present definition (involving m complex supercharges q1, . . . , qm) is the
same as definition 2 supplemented with an involution K.

Obviously, definitions 3 and 4 are nothing but definitions 1 and 2, respectively,
supplemented with the operator K. The crucial question is whether the existence of this
operator already follows from the existence and properties of the supercharges, i.e., whether
K necessarily represents a function of the supercharges or whether it is an extra independent
input.

In our study of the relationship between the given definitions we will concentrate on the
most popular special cases which we now summarize for later reference.
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2.2. The most important special cases

The simplest and most studied supersymmetric systems are, respectively, given by the
following cases:

• N = 2 in definition 1, i.e.,

Q2
1 = Q2

2 = H {Q1,Q2} = 0. (5)

• M = 1 in definition 2, i.e., with the notation q ≡ q1:

{q, q†} = 2H q2 = 0. (6)

• n = 1 in definition 3, i.e., with the notation Q ≡ Q1:

K2 = 11 {K, Q} = 0 Q2 = H. (7)

• n = 2 in definition 3, i.e.,

K2 = 11 {K, Q1} = {K, Q2} = 0 Q2
1 = Q2

2 = H {Q1, Q2} = 0. (8)

• m = 1 in definition 4, i.e., one has a non-self-adjoint operator q satisfying

K2 = 11 {K, q} = 0 {q, q†} = 2H q2 = 0. (9)

2.3. Summary of results

For the sake of clarity, we summarize the relationships between the special cases (5)–(9) which
are going to be established in what follows:

(A) By writing q = 1√
2
(Q1 + iQ2) and q = 1√

2
(Q1 + iQ2), one checks the equivalence of (5)

and (6) and the equivalence of (8) and (9).
(B) Relations (7) imply that the operator Q′ = ±iKQ represents a second supercharge, i.e.,

remarkably enough, n = 1 implies n = 2.
(C) The converse of (B) also holds, i.e., the two supercharges defining a n = 2 supersymmetric

system are related by Q2 = ±iKQ1.
(D) From relations (5), one can deduce the existence of an involution operator K such that

relations (8), or equivalently (7) or (9), hold.
(E) From relations (9), one concludes that K, q and H have the general form

K =
[

11 0
0 −11

]
q =

√
2

[
0 A†

0 0

]
H =

[
A†A 0

0 AA†

]
(10)

where A is a linear operator. In the literature, these expressions for the complex supercharge
and for the associated Hamiltonian (eventually with a specific choice of A in terms of the
operators of position and momentum) are referred to as Witten’s model of SUSYQM.

By combining the previous results, we conclude that the sets of relations (5)–(9) are
equivalent and that every supersymmetric Hamiltonian satisfying any one of these sets of
relations can be cast into the form (10). In other words, the latter expressions do not simply
describe a specific model of SUSYQM (with one complex or two real supercharges), but they
represent its most general form1.

The proof of statements (C) and (E) will be provided in section 3.2.1 and that of (D) in
section 4. The result (B) readily follows from the properties of the involution K [4]. The proof
of (A) is as follows. Note that q = 1√

2
(Q1 + iQ2) implies q† = 1√

2
(Q1 − iQ2) and that these

1 To be more precise, (10) is the most general form up to redefinitions of the supercharges leaving the Hamiltonian
invariant—see section 2.4 below. In particular, application of unitary transformations may lead to more complicated
expressions for the operators.
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expressions are equivalent to Q1 = 1√
2
(q + q†),Q2 = −i√

2
(q − q†). From

0 = q2 = 1
2

(
Q2

1 − Q2
2 + i{Q1,Q2}

) ⇐⇒ Q2
1 = Q2

2 and {Q1,Q2} = 0

2H = {q, q†} = Q2
1 + Q2

2

one concludes that H = Q2
1 = Q2

2 with {Q1,Q2} = 0 and vice versa.

2.4. Non-uniqueness of supercharges and extra symmetries

Suppose (H,H) represents a supersymmetric system in the sense of equation (5) with
supercharges Q1 and Q2. Then, H can be expressed in a completely symmetric way in
terms of the supercharges: H = 1

2

(
Q2

1 + Q2
2

)
. From this expression, it is clear that the charges

Q1 and Q2 are not unique: the reparametrization Q′
i = ∑2

j=1 aijQj , where the matrix
A ≡ (aij ) describes a real orthogonal transformation (i.e., A ∈ O(2)), leaves the defining
relations of the supersymmetric system and, in particular, the Hamiltonian invariant. Thus,
Q′

1 and Q′
2 represent an equivalent collection of supercharges for the given supersymmetric

system and a supersymmetric Hamiltonian admits a larger invariance than supersymmetry
since it is automatically invariant under a rotation in the (Q1,Q2)-space.

Similarly, in equation (8), the supercharges Q1 and Q2 can be transformed by a matrix
A ∈ O(2) and, in (6) or (9), the complex supercharge can be changed by a phase factor
λ ∈ U(1).

3. Consequences of the definitions

In this section, we show that definition 3 with n = 1, i.e., equations (7), implies the
characteristic features that are generally associated with SUSYQM. Thereafter, we discuss
the general form of such supersymmetric systems and we illustrate the results by two simple
examples.

3.1. Characteristic features of supersymmetric systems

We outline the consequences of definition 3 for a single supercharge Q1 ≡ Q by expanding
on the brief discussion presented in [4]. The inner product on the Hilbert space H will be
denoted by 〈· , ·〉 and the induced norm by ‖·‖. As usual the restriction of an operator A on H
to a subspace D ⊂ H is written as A � D.

Since Q is self-adjoint and H = Q2, we have H � 0 by virtue of

〈ϕ,Hϕ〉 = 〈Q ϕ, Q ϕ〉 = ‖Q ϕ‖2 � 0 for any ϕ ∈ H.

Thus, a supersymmetric Hamiltonian necessarily has a non-negative spectrum. As mentioned
already, H = Q2 implies [H, Q] = 0.

From K2 = 11, it follows that the involution K only admits ±1 as eigenvalues. Henceforth,
K induces a direct sum decomposition of the Hilbert space H : if ϕ ∈ H, then

ϕ = 1
2 (ϕ + Kϕ) + 1

2 (ϕ − Kϕ)

≡ ϕb + ϕf . (11)

In other words,

H = Hb ⊕ Hf with

{
Hb = {ϕ ∈ H | Kϕ = +ϕ}
Hf = {ϕ ∈ H | Kϕ = −ϕ}. (12)

Since K �= ±11, the subspaces Hb and Hf are non-trivial, i.e., different from H and {0}.
Motivated by the role played by the operator Q in particle physics, the vectors belonging
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to Hb and Hf are called, respectively, bosonic (or even) and fermionic (or odd) vectors2.
In the present context, this terminology only expresses the dichotomy introduced into the
theory by the involution K: the precise physical interpretation depends on the example under
consideration.

It is convenient to introduce a matrix notation for the vectors belonging to the direct sum
(12): rather than writing ϕ = (ϕb, 0) + (0, ϕf ), we will use the matrix notation

ϕ =
[
ϕb

0

]
+

[
0
ϕf

]
=

[
ϕb

ϕf

]
.

With this notation for the vectors, the operator K reads

K =
[

11b 0
0 −11f

]
(13)

where 11b denotes the restriction of the identity operator to the subspace Hb of H, and
analogously for 11f .

The involution K not only induces a decomposition of the state space H, but also of the
algebra of operators acting on H. In fact, let

M =
[
A B

C D

]
denote a generic operator acting on H = Hb ⊕ Hf . Then

[K,M] = 0 ⇐⇒ M =
[
A 0
0 D

]
(14)

and

{K,M} = 0 ⇐⇒ M =
[

0 B

C 0

]
. (15)

In analogy with the terminology introduced for the state vectors, the operators commuting
with the involution K are called bosonic or even operators while those anticommuting with K
are referred to as fermionic or odd operators.

Since Q is self-adjoint and anticommutes with K, the result (15) applied to M = Q implies
that

Q =
[

0 A†

A 0

]
(16)

where A is a linear operator. Let us now apply Q to a vector ϕ ∈ H:

Q ϕ =
[

0 A†

A 0

] [
ϕb

ϕf

]
=

[
A†ϕf

Aϕb

]
.

Since the resulting vector again belongs to the space Hb ⊕ Hf , we have

Q : Hb → Hf Q : Hf → Hb (17)

which means that Q exchanges bosonic and fermionic states. It is precisely this fundamental
property of Q which is at the origin of the terminology ‘supersymmetry’ operator.

By virtue of H = Q2 and (16), the Hamiltonian H has the form

H =
[
A†A 0

0 AA†

]
≡

[
H+ 0
0 H−

]
(18)

with H+ : Hb → Hb and H− : Hf → Hf .

2 One also says that H is a Z2-graded Hilbert space with a fixed parity [7].
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We remark that expressions (13), (16) and (18) are known as the standard or fermion
number representation of SUSYQM. Equivalent though more complicated expressions can be
obtained by applying a unitary transformation to all of these operators.

To conclude, we come to the fundamental spectral property of every supersymmetric
system. Suppose3

Hϕ = Eϕ with E > 0.

By applying the operator Q to this relation and using [H, Q] = 0, we find

H(Q ϕ) = E(Q ϕ).

Hence, if ϕ is an eigenstate of the Hamiltonian H, then Q ϕ also represents an eigenstate of
H associated with the same eigenvalue E > 0. (This argument is not valid for E = 0: the
relation Hϕ = 0 infers 0 = 〈ϕ,Hϕ〉 = ‖Q ϕ‖2, therefore Q ϕ = 0 is the null vector which is
not an eigenvector by definition.)

According to (17), ϕ ∈ Hb (respectively Hf ) implies Q ϕ ∈ Hf (respectively Hb). Thus,
we have derived the following fundamental property of a quantum mechanical system which
is supersymmetric in the sense of definition 3.

Theorem 3.1 (degeneracy structure of a supersymmetric system). For an n = 1
supersymmetric system, the non-vanishing eigenvalues of the Hamiltonian admit the same
numbers of bosonic and fermionic eigenvectors.

In other words, the partner Hamiltonians H �Hb and H �Hf are isospectral, except possibly
for the eigenvalue zero. For later reference, we recall that the difference between the numbers
of bosonic and fermionic states of zero energy is known as the Witten or supersymmetric index
of H [2, 4, 8]:

indS H = dim ker [H � Hb] − dim ker [H � Hf ]

= dim ker A − dim ker A†.
(19)

Here ‘ker’ denotes the kernel and A is the operator defining the supercharge Q according to
(16). We note that expression (19) is only well defined if Q has some extra properties like
being of Fredholm type, i.e., if the eigenvalue 0 of Q has finite multiplicity [8].

To conclude, we note that in the physically or mathematically interesting applications, the
Hilbert spaces H,Hb and Hf are of infinite dimension so that we have the isomorphism

Hb ⊕ Hf
∼= C2 ⊗ Hbf with Hbf

∼=Hb
∼=Hf . (20)

The involution K then takes the form

K = σ3 ⊗ 11 with σ3 =
[

1 0
0 −1

]
(21)

which is simply written as K = σ3 in most of the literature. In this setting, the (2 × 2)-matrix
format of the supercharge (16) or of the involution (21) can also be expressed in terms of the
so-called fermionic creation and annihilation operators which act on the Hilbert space C2 and
satisfy canonical anticommutation relations: we have

Q = f † ⊗ A + f ⊗ A† with f =
[

0 1
0 0

]
(22)

3 Here, the real number E belongs to the discrete spectrum of H if ϕ is an element of the Hilbert space H (or, more
precisely, if it is an element of the domain D(H) ⊂ H of the operator H). It belongs to the continuous spectrum of H
if ϕ represents a weak (distributional) solution of the eigenvalue equation.
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as well as σ3 = [f, f †], i.e.,

K = [f, f †] ⊗ 11 (23)

where

{f, f †} = 112 {f, f } = 0. (24)

The fact that Q is linear in the fermionic operators f and f † (acting on C2) reflects the fact
that Q is fermionic (odd) with respect to the Z2-grading on H.

3.2. General form of an n = 1 (or n = 2) supersymmetric system

3.2.1. Supercharges and involution. Let us consider an n = 1 supersymmetric system. By

virtue of (16), the supercharge has the general form Q ≡ Q1 = [ 0 A
†
1

A1 0

]
. We can decompose the

operator A1 according to A1 = a1 + ia2 where the self-adjoint operators a1 and a2 represent
the Hermitian and anti-Hermitian (real and imaginary) parts of A1. Thus, we have

Q1 =
[

0 a1 − ia2

a1 + ia2 0

]
. (25)

Given the operators a1 and a2, one can find a second supercharge of the same form,

Q2 ≡ [ 0 b1 − ib2

b1 + ib2 0

]
, which is ‘normalized’ in the sense that Q2

2 = Q2
1 and which is

‘orthogonal’ to Q1 in the sense that {Q1, Q2} = 0: this supercharge is determined up to
a global sign and given by

Q2 =
[

0 −a2 − ia1

−a2 + ia1 0

]
. (26)

In other words, (b1, b2) = ±(−a2, a1).
One immediately verifies that

Q2 = −iKQ1 or equivalently Q1 = +iKQ2 (27)

hence we have the following general result: every n = 2 supersymmetric system is of the form
(27), i.e., n = 1 is equivalent to n = 2. The associated complex supercharge takes the simple
and well-known form which was put forward in equation (10):

q ≡ 1√
2
(Q1 + iQ2) =

√
2

[
0 A

†
1

0 0

]
. (28)

If H,Hb and Hf are of infinite dimension, the operator A1 acts on Hbf
∼=Hb

∼=Hf and
we can rewrite expressions (25), (26) as

Q1 = σ1 ⊗ a1 + σ2 ⊗ a2, Q2 = σ2 ⊗ a1 − σ1 ⊗ a2. (29)

Here, σ1 and σ2 are the Pauli matrices which represent a basis of complex Hermitian (2 × 2)-
matrices anticommuting with σ3. (Note that the operators (29) anticommute with K = σ3⊗11.)
These Hermitian matrices generate the Clifford algebra associated with the Euclidean metric
in a two-dimensional vector space,

{σα, σβ} = 2δαβ11 (α, β = 1, 2). (30)

Following the practice of quantum mechanics, we can combine the generators σ1 and σ2

satisfying relation (30) into a fermionic annihilation operator

f ≡ 1

2
(σ1 + iσ2) =

[
0 1
0 0

]
(31)
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the latter acting on the Hilbert space C2 and satisfying the canonical anticommutation relations
(24). The general form of supercharges for an n = 2 supersymmetric system, as given by
(29), then reads

Qi = f † ⊗ Ai + f ⊗ A
†
i with A1 ≡ a1 + ia2, A2 ≡ −a2 + ia1. (32)

The associated complex supercharge is given by q = √
2f ⊗ A

†
1 and the Hamiltonian

H = Q2
1 = Q2

2 takes the form

H = {f, f †} ⊗ (
a2

1 + a2
2

)
+ [f, f †] ⊗ i[a1, a2]

= 112 ⊗ (
a2

1 + a2
2

)
+ σ3 ⊗ i[a1, a2].

(33)

3.2.2. Examples. Many interesting Hamiltonians are supersymmetric, e.g. see [1–4]. The
prototype examples are the spin- 1

2 particle in a one-dimensional superpotential or in a constant
two-dimensional magnetic field. A simple and an important example of a more mathematical
nature is the Laplace–Beltrami operator (acting on the Hilbert space of the differential forms
defined on a Riemannian manifold): slight modifications of this example have been used to
prove deep mathematical theorems [2, 4]. By way of illustration, we now elaborate briefly on
a quantum mechanical system whose supersymmetric nature is not very familiar.

The free particle in one dimension. As pointed out quite recently [9], the free particle moving
on a line represents the simplest example of SUSYQM. In this case, the involution operator is
realized [10] by the parity operator4:

(Kϕ)(x) = ϕ(−x) for ϕ ∈ H = L2(R). (34)

Indeed, this operator is bounded, self-adjoint and satisfies K2 = 11. Since the momentum
operator p ≡ px changes sign under a parity transformation, KpK† = −p, we have
{K,p} = 0. Henceforth, the operator Q = 1√

2
p represents a supercharge for this quantum

mechanical system:

H = Q2 = 1
2p2 {K, Q} = 0. (35)

Let us verify that all of these expressions admit the standard matrix representation.
The decomposition (11) into bosonic and fermionic vectors is now to be interpreted as a
decomposition into even and odd parity functions:

ϕ(x) = 1
2 [ϕ(x) + ϕ(−x)] + 1

2 [ϕ(x) − ϕ(−x)]

≡ ϕ+(x) + ϕ−(x).

The momentum operator modifies the parity,

pϕ = (pϕ)+ + (pϕ)− = 1
2 (11 + K)pϕ + 1

2 (11 − K)pϕ

= p 1
2 (11 − K)ϕ + p 1

2 (11 + K)ϕ

= p(ϕ−) + p(ϕ+)

i.e. (pϕ)± = p(ϕ∓).
Let us introduce the projection operators �± = 1

2 (11 ± K) which satisfy �+�− =
�−�+ = 0 and �+ + �− = 11. Since {K,p} = 0, we obtain

p = 11p11 = �−p�+ + �+p�−
= p � H+ + p � H−

}
with

{
�−p�+ : H+ → H−
�+p�− : H− → H+

(36)

4 The author of [10] refers to this choice as the ‘minimally bosonized SUSYQM’ and discusses the one-dimensional
particle in a parity-odd superpotential.
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and (�−p�+)
† = �+p�−. For the sake of clarity, we presently put a hat on vectors and

operators when referring to the matrix expressions,

H = H+ ⊕ H− �
[
ϕ+

ϕ−

]
≡ ϕ̂ K̂ =

[
11 0
0 −11

]
√

2Q̂ = p̂ ≡
[

0 0
p−+ 0

]
+

[
0 p+−
0 0

]

Ĥ = Q̂
2 = 1

2

[
p+−p−+ 0

0 p−+p+−

]
(37)

where the two contributions of p̂ correspond to those of p displayed in (36).
In this example, the spectrum of the superpartners H+ ≡ H � H+ and H− ≡ H � H− is

purely continuous and the generalized even and odd parity eigenfunctions associated with the
spectral values E = 1

2ρ2 are given by

ϕ(+)
ρ (x) = cos(ρx) for ρ � 0

ϕ(−)
ρ (x) = sin(ρx) for ρ > 0.

(38)

Thus, ρ = 0 is a non-degenerate spectral value while the double degeneracy of all other
spectral values is a manifestation of supersymmetry [9].

By virtue of the result (B) stated in section 2.3, a second supercharge exists and is given
by Q2 ≡ ±iKQ = ±i√

2
Kp. However, this operator as well as the complex supercharge

q = 1√
2
(Q+iQ2) are non-local since they explicitly involve the parity operator. (The definition

of locality that we have in mind here is the following one [14]. Let C∞
0 (R) ⊂ L2 (R)

denote the space of smooth functions f : R → C with compact support. An operator
A : C∞

0 (R) → L2 (R) is said to be local if the support of Af is contained in the support of
f for all f ∈ C∞

0 (R)).

The spin- 1
2 particle in a three-dimensional magnetic field. A less basic example is given by

Pauli’s Hamiltonian for a spin- 1
2 particle in a magnetic field �B = �rot �A. This operator acts on

H = L2(R3) ⊗ C2 and has the form

2H = ( �p − �A)2112 − �B · �σ . (39)

Here, �σ = (σ1, σ2, σ3) and, for simplicity, we do not spell out the tensor product symbols in
the present example. As was already noted in the early days of SUSYQM [11], we have

H = Q2 with
√

2Q = ( �p − �A) · �σ
and KQK−1 = −Q, where K represents the parity operator5. The latter equation can also
be rewritten as {K, Q} = 0 and therefore we actually have an n = 1 supersymmetric system.
However, just as in the previous example, the second supercharge and the complex supercharge
are given by non-local operators.

A simple matrix representation for the state vector φ = [ϕ,ψ]t ∈ H (where ‘t’ denotes
transposition) is defined by the 4-component column vector φ̂ = [ϕ+, ψ+, ϕ−, ψ−]t , where
ϕ+ and ϕ− denote, respectively, the even and odd parity parts of ϕ ∈ L2(R3). The operators
characterizing the supersymmetric system then read

K̂ =
[

112 0

0 −112

] √
2Q̂ =

[
0 ( �p − �A) · �σ

( �p − �A) · �σ 0

]

5 Note that K �σK−1 = �σ since �S ≡ 1
2 �σ represents the angular momentum of spin.
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Ĥ = Q̂
2 = 1

2

[
( �p − �A)2112 − �B · �σ 0

0 ( �p − �A)2112 − �B · �σ

]
.

Here, we have suppressed the indices ‘+’ and ‘−’ denoting the restriction of operators to the
subspaces H+ and H−, see equation (37).

4. Construction of an involution from two supercharges

In this section, we will deal with statement (D) made in section 2.3, i.e., we will show that
one can construct an involution operator K from the two supercharges Q1 and Q2 defining an
N = 2 supersymmetric system. To do so, we first try to find a concrete expression for the
involution which is present in an n = 2 supersymmetric system.

As we have seen in section 3.2, the supercharges Q1 and Q2 defining an n = 2 system are
related by

Q2 = −iKQ1 (40)

(or Q2 = +iKQ1). Equation (40) can be solved for K,

K = iQ2Q
−1
1 on (ker Q1)

⊥ (41)

where (ker Q1)
⊥ denotes the orthogonal complement of the subspace ker Q1.

In view of expression (41), we introduce an involution into the setting of definition 1 by
defining

K = iQ2Q
−1
1 on (ker Q1)

⊥. (42)

Clearly, the extension of the operator K to all of H requires further discussion. Before dealing
with this issue, we note that relation Q2

1 = Q2
2 for two self-adjoint operators Q1 and Q2

implies that the kernels of these operators coincide:

Q1ϕ = 0 ⇐⇒ Q2ϕ = 0. (43)

In fact, Q1ϕ = 0 is equivalent to

0 = ‖Q1ϕ‖2 = 〈Q1ϕ,Q1ϕ〉 = 〈
ϕ,Q2

1ϕ
〉 = 〈

ϕ,Q2
2ϕ

〉 = ‖Q2ϕ‖2

hence Q2ϕ = 0.
Furthermore, for any self-adjoint operator Q, we have the equivalence

Qϕ = 0 ⇐⇒ Q2ϕ = 0. (44)

Indeed, the left-hand side obviously implies the right-hand side and the converse statement
follows from

0 = 〈ϕ,Q2ϕ〉 = 〈Qϕ,Qϕ〉 = ‖Qϕ‖2.

Theorem. Let (H,H) be a supersymmetric system in the sense of definition 1 with N = 2,
that is, assume that there exist self-adjoint operators Q1 and Q2 satisfying Q2

1 = Q2
2 ≡ H

and {Q1,Q2} = 0. Then, we have the following:

(i) The operator K defined on (ker Q1)
⊥ by (42) admits an extension to all of H which

represents a non-trivial involution anticommuting with Q1 and Q2. Hence, (H,H) is an
n = 2 supersymmetric system in the sense of definition 3.
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(ii) More specifically, if Q1 has a kernel of finite dimension, then there exists a one-parameter
family of extensions parametrized by the integer number indSH ≡ d+ − d− where
d+, d− ∈ {0, 1, 2, . . .} are subject to the condition

d+ + d− = d ≡ dim ker Q1. (45)

Accordingly, there are d + 1 possible values for indSH :

indS H ∈ {−d,−d + 2, . . . , d − 2, d}.

Proof. The Hilbert space H can be decomposed into a direct sum of the kernel of Q1 (i.e., the
eigenspace associated with the eigenvalue zero) and its orthogonal complement:

H = H0 ⊕ H⊥ with H0 = ker Q1 = ker H H⊥ = (ker Q1)
⊥. (46)

The operator Q1 �H⊥ is invertible, hence K �H⊥ can be defined as in equation (42). On the
space H⊥, the operator K satisfies

K† = K K2 = 11 {K,Q1} = {K,Q2} = 0. (47)

The definition (42) of K on H⊥ is equivalent to the relation

Q2 = −iKQ1 on H⊥ (48)

and the question is whether or not one can define an extension of the operator K �H⊥ to all
of H such that the relation Q2 = −iKQ1 and relations (47) also hold on H0. The validity of
Q2 = −iKQ1 on H0 is equivalent to

Q2ϕ = −iKQ1ϕ for all ϕ ∈ H0.

This equation holds trivially since both sides vanish by virtue of (43), whatever the expression
of K. Thus, the only constraints for the definition of K on H0 consist of the conditions K† = K

and K2 = 11. Operators with these properties exist and any one of them will be suitable for
our theorem. In particular, if the eigenvalue zero of Q1 is of finite multiplicity, then K �H0 is
(up to unitary equivalence) a diagonal matrix with eigenvalues ±1, i.e.,

K �H0 = diag(1, . . . , 1;−1, . . . ,−1)

with d+ � 0 entries 1 and d− � 0 entries −1, subject to the condition (45). Since there is
no constraint for the integer d+ − d−, any value satisfying |d+ − d−| � d+ + d− ≡ d can be
chosen: each one gives rise to another extension of K to all of H. �

5. Concluding remarks

Our discussion shows that a precise answer to the question raised in the title of our paper can
only be given if one specifies the definition of SUSYQM that one has in mind. Obviously,
n = 1 and n = 2 SUSYQM are equivalent. Furthermore, it seems that the examples presented
in the literature for N = 1 SUSYQM (like Pauli’s Hamiltonian) actually represent examples
of n = 1 since an involution exists, though the second supercharge of the ensuing n = 2
system is non-local in this case.

There is no reason for a true N = 1 supersymmetric system (i.e., H = Q2
1 with no

involution K that satisfies {K,Q1} = 0) to be equivalent to an N = 2 system6. For such a
system, the property of being ‘even’ or ‘odd’ is not defined and therefore one cannot infer any
of the typical properties associated with supersymmetric systems. Accordingly, the statement

6 A simple example for such a system is given by the supercharge
√

2Q1 = ( �p − �A) · �σ + ϕ112 where ϕ represents a
superpotential that does not have a definite space parity.



10396 M Combescure et al

made in the pioneering work [2] that ‘the simplest supersymmetric quantum mechanical
system has N = 2’ should indeed be interpreted as stating that N = 1 SUSYQM is not truly
supersymmetric.

From our discussion, we can conclude that the conceptually simplest approach to
SUSYQM is the approach that starts with one supercharge Q that anticommutes with an
involution operator K. Simpler or physically more transparent expressions can eventually be
obtained by using Q and K to construct a second supercharge or by introducing a complex
supercharge in terms of the latter two charges.

The line of arguments presented in our work can be generalized to a large extent to the
case of SUSYQM with more than two supercharges, as well as to parasupersymmetric and
fractional supersymmetric quantum mechanics. This discussion is beyond the scope of the
present paper and will be reported elsewhere [12, 13].
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